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摘要

本研究提出了一套基於密度估計技術的全局光照演算法。此方法奠

基於現有之漸進式光子映射法，在疊代的過程中逐步加入更高頻率的

光影細節。我們的方法藉由移除所有在場景模型內的奇異點，以強韌

地捕捉所有可能的光傳輸路徑，且不必像一般光子映射法需在能量估

計階段時進行材質相關參數的計算。我們所提出的光子錐收縮形式能

確保在使用有限記憶體的前提下達成一致的估計，並有正式之數學證

明與漸進誤差分析實驗以佐證其收斂性。最後，我們將含有複雜光傳

輸路徑之場景其渲染結果與現今一致及無偏方法進行了質與量的分析

和比較。

關鍵字： 光照傳輸，光子映射，密度估計，全局光照，算繪，渲染，

彩現，光線追蹤，光子錐
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Abstract

We propose a robust light transport algorithm that is able to capture all

possible transport paths where the vast majority of the techniques involved

are based on density estimation. It builds on top of existing progressive pho-

ton mapping methods where higher frequency lighting effects are added in

subsequent iterations. Our approach is capable of eliminating all singular-

ities encountered in a scene representation, and does not require evaluating

material properties during the energy estimation process unlike the rest of

photon mapping methods. The proposed photon cone focusing scheme is a

consistent method that requires only finite memory to converge. A formal

proof of convergence is given along with asymptotic analysis of estimation

variance and bias. We compare our results to recent consistent and unbiased

methods with scenes that contain difficult light paths in both qualitative and

quantitative ways.

Keywords: light transport, photon mapping, density estimation, global illu-

mination, rendering, ray tracing, photon cone
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Chapter 1

Introduction

Curiosity is a strong driver of human civilization. Being able to simulate phenomena in

the observable world is beneficial in many ways. The continuation of Moore’s law makes

it possible to perform physics simulation with more precision over the years, pushing our

understanding of nature to a state never seen before. Light transport, in computer graphics,

is among the genre of simulating macroscopic behavior of electromagnetic radiation in the

visible spectrum. It is often seen in the design of architecture, visual effects, video games,

and much more. Accurately synthesize imageries that are indistinguishable from actual

photos and/or measured data in real-time is long being the holy grail of computer graphics.

The advent of physically based rendering can be seen as an ongoing attempt to pursue such

goal, with the help of more efficient algorithms and cutting edge hardware in each year.

However, with increased computational power, our demand for modeling details has

grown even more. Scenes with light paths that are unable to sample using traditional

methods in a reasonable amount of time, or complex layered materials with ultra high res-

olution textures, are no longer being rare. Notably, render time today is not dominated by

ray tracing in production environments. Instead, scene assets such as materials now take a

significant portion of the render time to fetch and evaluate [7][5]. Hardware accelerations

such as nVidia’s RTX cards can further increase the traversal performance of acceleration

structures, posing other components in a more performance-critical part.

As the field advances, we often see light transport theories that require special care

to singularities within a scene, or even unable to render them. Such singularities can

1
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Figure 1.1: A photograph of some usual interior scene with difficult-to-handle lighting
phenomena marked. Caustics and its reflections from lighting through glass panels (A).
Indirect illumination from adjacent room (B). Small liminares with translucent fixture (C).
Glossy interreflections (D). Complex layered material (E). Image courtesy of Milly Eaton
from Pexels.

be delta responses in bi-directional scattering distribution function (BSDF) of a material,

or energy/importance emitting sources such as point light, directional light, and pinhole

camera. The family of path tracing methods is unable to handle caustics generated by

point lights and received by pinhole camera under certain configurations, for example.

Even with photon mapping methods which excelled at rendering caustics, they rely on

finding non-delta BSDFs to merge vertices and will fail if no such material is found. See

Section 5.1.1 for discussions regarding this issue.

The main objective of this thesis is to develop a light transport algorithm that is robust

in terms of the number of captured light paths, eliminating any singularities encountered

while maintaining the nice property of path reuse to gain efficiency. This can also re-

lieve the burden of handling special cases in light transport from programmers. Also,

the method should converge to the correct energy estimate of a scene. Moreover, as ma-

terial evaluation (shader execution) has become an expensive operation nowadays, we

2
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would like to reuse shading results as much as possible. To satisfy our goals, we focus

on Monte-Carlo methods that are capable of progressively refine the result with cached

values. This will allow us to reuse and refine calculated results iteratively, and terminate

the render process if sufficient quality is obtained.

1.1 Related Work

Photon mapping algorithms are a family of global illumination methods first introduced

by Jensen and Christensen [19]. It is a two-pass rendering algorithm that traces photons

(particles) in the first pass, then visualizes scene illumination in the second pass using the

constructed photon map. The photon map is essentially an approximation of the illumi-

nation information of a scene, which can be cached in subsequent visualization passes.

However, the original algorithm is limited by the amount of memory the computing de-

vice has, and suffers from low-frequency biases that can only be cleared by increasing

photon density (which demands more memory).

Veach [31] introduced several algorithms that are essential to later studies. Important

to our work is the path integral formulation and a formal description of particle tracing

methods under a unified mathematical framework. Furthermore, his variance reduction

techniques such as multiple importance sampling (MIS) is among the core of our algo-

rithm. He also identified that there exist certain arrangements of emitters (lights and sen-

sors) and materials that are unable to handle by any unbiased methods.

Later, Hachisuka et al. proposed the progressive photon mapping (PPM) method [11]

and an improved version called stochastic PPM (SPPM) [10]. These methods greatly

increase the usability of photon mapping as they can utilize an effectively unlimited num-

ber of photons for rendering, and the resulting image converges to the ground truth with

enough number of iterations. The fact that view paths (paths starting from the camera) are

still handled by canonical path tracing (PT) makes PPM and SPPM inherit the properties

of PT hence the inefficiencies in handling certain light paths.

Knaus and Zwicker generalizedHachisuka’swork using a probabilistic point of view [24],

removing the need for storing view path buffers. Kaplanyan and Dachsbacher further in-

3
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vestigated its statistical properties and proposed an adaptive PPM (APPM) algorithm [22]

that optimally balances the noise and bias trade-off in photon mapping methods. Fol-

lowing APPM is the path space regularization framework again introduced by Kaplanyan

and Dachsbacher [23]. The path space regularization framework can include the afore-

mentioned photon mapping methods as a special case to their mathematical formulation.

Their method mollifies delta distributions in BSDFs and is, in theory, able to handle all

possible light transport paths. Our photon cone radiance estimator is similar to this work

on specular surfaces and SPPM on the iteration process, except that we store and reuse

particle records on all types of materials including delta distributions. Bouchard et al. [2]

included specular mollification (angular regularization) in the path space regularization

work as an additional sampling strategy much like the way spatial regularization is com-

bined (vertex connection and merging, the VCM method, by Georgiev et al. [8]; and uni-

fied path sampling, the UPS method, by Hachisuka et al. [12]). Our method also puts

the spatial and angular domain in a unified mathematical framework, with differences as

we directly extend probabilistic PPM into a joint position-directional space, and does not

require material evaluation during the radiance estimating process.

Complex luminaires which are composed of hundreds of individual emitting, reflect-

ing, and transmitting parts are a typical example of a hard scene. Several works are dedi-

cated to modeling complex luminaires with caches. Edgar et al. [33] models light sources

such as chandeliers with anisotropic point lights and radiance volumes. And Kniep et

al. [25] extends Jensen’s photon mapping algorithm to incorporate angular domain in or-

der to model the emission profile of automotive tail lamps and other complex light sources.

Inspired by their 4-D kernel, we design our kernel with a parameter controlling the rela-

tive trade-off of bias and error between spatial and angular domain. Our approach can also

apply to their work with an additional benefit that a consistent estimate can be obtained in

the limit with finite memory.

These works laid the foundation for developing our photon cone focusing (PCF) algo-

rithm.

4
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1.2 Summary of Original Contributions

We list major contributions and key insights developed in this work as follows:

A Robust Light Transport Formulation

Our formulation of photon cone radiance estimate can handle all types of transport

paths, and it is robust in terms of the number of captured lighting phenomena. It is

a two-pass method that does not require the accessibility of material properties in

the radiance estimation stage (second pass). The cached radiance map is in itself a

standalone light field representation independent of material descriptions.

Convergence Analysis

Mathematical proofs, as well as experimental results, are given assuring the image

rendered by our method converges to the ground truth.

Multiple Importance Sampling for Photon Cones

Wedeveloped several multiple importance sampling schemes for generating particle

records, improving statistical behaviors of the proposed light transport algorithm.

A Formal Description of Photon Mapping

We identify the fact that photon mapping has two common interpretations and most

works do not clearly distinguish one from the other, which can lead to confusion in

understanding the details of a proposed method. A concise description is given to

clarify the issue.

New 4-D Kernel for Estimating Surface Energy

A joint position-directional kernel is designed to estimate and control the relative

trade-off of bias and error between spatial and angular domain. We analyzed bounds

for the required parameter to ensure consistent renderings.

5
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1.3 Thesis Organization

The thesis is divided into 6 chapters, providing background and in-depth descriptions re-

garding light transport using density estimation techniques. In the following parts, we pro-

vide general knowledge for understanding the photon mapping method and its advanced

variants in Chapter 2. In Chapter 3, we introduce the photon cone radiance estimator and

the photon cone focusing (PCF) method, with mathematical proofs for its convergence.

Chapter 4 is dedicated to implementation details of PCF such as the rendering pipeline

and several multiple importance sampling techniques, along with guidance on controlling

several input parameters. Then, in Chapter 5, we identify characteristics of the proposed

method and compare our results to existing global illumination methods. Finally, conclu-

sions and potential future works are given in Chapter 6.

We provide appendices which cover more details in the context of the referencing

chapters.

6
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Chapter 2

Understand Photon Mapping

Particle1 tracing methods are widely used in rendering lighting setups where path sam-

pling algorithms have low probability in producing a non-zero path contribution, e.g.,

SDS paths. Notably, photon mapping as originally proposed by Jensen [18] was effective

in rendering caustics and has received much developments and extensions over the years.

It is often being described as shooting energy packets from light sources and record their

contribution on the surfaces in the scene (the photon map), which can later be utilized to

actually render the scene (visualization). Despite being intuitive, its relation to the render-

ing equation [21] and how surfaces interact with the energy packets are rarely described

formally in papers and online literatures2. Moreover, photons usually carry radiant flux

which implies the total flux of the lights in a scene must be known. Such information

is often not readily available or difficult to obtain accurately; for instance, one might re-

sort to Monte-Carlo methods to obtain radiant flux for procedural lights. It is also not

straightforward to extend the energy packet interpretation in case other quantities are be-

ing transported.

This chapter is intended to glue the concepts in photon mapping altogether in a sin-

gle place, with the assumption that readers are familiar with unbiased light transport al-

gorithms (especially unidirectional path tracing). In particular, solid theoretical founda-

tions 2.2 are provided for understanding its advanced variants.
1In computer graphics, the word photon is often used in place of particle. It is not the same as photon in

the field of physics.
2Note that Hachisuka made a similar observation in his dissertation [9, Section 4.4.3].
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2.1 Energy Packet Interpretation

This section serves as a quick review of the traditional interpretation of photon mapping.

We do not go into details as good references exist [20], and the following derivation is

included for completeness.

2.1.1 Photon Shooting Pass

As mentioned earlier, photon mapping methods was first formulated as discretizing light

energy into small packets and trace them using standardMonte-Carlo techniques [28] [18].

Often, the energy packets carry radiant flux which is also known as the watt (abbreviated

as W; or J/s, for joule per second) in SI unit, denoted as

Φ =
∂Q

∂t
, (2.1)

where Q is the emitted radiant energy from lights and t is time. It is advised to shoot

photons according to the distribution formed by emitted energy of each light, such that

each photon does not differ too much in carried energy Φj . Every time a photon hit a

non-specular surface, its incoming direction ωi,j and carried energyΦj are recorded. Note

that for conservation of energy, photons should further satisfy the normalization condition

Φ0 = E

[ M∑
j=1

Φj

]
, (2.2)

where Φ0 is the total energy emitted in the scene andM is the amount of photons.

2.1.2 Visualization Pass

After the photon shooting pass, the solution of the rendering equation [21]

Lo (x,wo) = Le (x,wo) +

∫
Ω

Li (x,wi) f (x,wi, wo) cos θidwi, (2.3)

8
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can be approximated using the information stored previously (the photon map). Recall

that irradiance, the radiant flux received by a surface per unit area, has the form

E =
∂Φ

∂A
, (2.4)

where A is the surface area; and radiance, the radiant flux received by a surface per unit

area per unit projected solid angle

L =
∂2Φ

cosθω∂A∂ω
=

∂E

cosθω∂ω
, (2.5)

where θω is the angle between surface normal and ω. Assuming E depends only on the

variables mentioned, after applying a change of variable dEi = cosθiLidωi with the in-

coming irradiance Ei and substituting into the rendering equation, we have

Lo (x,wo) = Le (x,wo) +

∫
Ω

f (x,wi, wo) dEi. (2.6)

Since each photon carries a differential amount of energy Φj = ∆Φ0 from the total

emitted energy Φ0, the irradiance arriving at some surface can be approximated easily

∆Ei = Ej =
∆Φ0

∆A
=

Φj

πr2
, (2.7)

where ∆A is often replaced with the 2-D area of a circle under the assumption that the

surface geometry is locally flat around the position of a photon. It is now clear that equa-

tion (2.6) can be solved using the photon map

Lo (x,wo) ≈ Le (x,wo) +
1

πr2

M∑
j=1

f (x,wi, wo) Φj, (2.8)

where the summation selects only photons around x with a radius r.

With equation (2.8) at hand, a lookup table for excitant radiance Lo (x,wo) of the

scene (the photon map) can be constructed. Finally, image synthesis techniques, e.g., path

tracing (see appendix A), can utilize the table to render images.

9
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2.2 Measurement Interpretation

Lights in modern scenes are typically modeled with spatially varying emission profiles

such as textured area lights, IBL techniques, or even procedurally generated sources. En-

ergy packet interpretation 2.1 does not fit well in current situations since other than dif-

fusive area lights, the calculation of radiant flux of a light source is quite involved. For

example, an environment map that models light sources infinitely far away with filters

applied; or an arbitrary emission profile applied on an implicit surface. In such cases,

irradiance E or radiance L are more natural quantities to trace and store. This section is

intended to give a generalized interpretation of photon mapping that is able to work with

arbitrary transport quantities, which is also crucial to our photon cone focusing method.

2.2.1 Mathematical Formulation

Our derivation is based on the particle tracing framework by Veach [31, Appendix 4.A].

For rendering an image, the goal is to obtain pixel radiance Lpixel by solving the measure-

ment equation

Lpixel =

∫
A sensor

∫
Ω

We (x1 → x0)Li (x1 → x0) dωdA, (2.9)

whereWe is the sensor response function and Li is the incoming radiance. Here, we write

the function arguments (xk, ωi,k) as (xk+1 → xk) for clarity reasons3. A more general

description of the measurement equation can be found in A.2. Also, the radiance that

comes from xk+1 to xk can be written as4

Lo (xk+1 → xk) = Le (xk+1 → xk)

+
∞∑
n=1

{∫
Ωn

Le (xk+n+1 → xk+n) ·
n∏

i=1

[
f (xk+i+1 → xk+i → xk+i−1) cos (θk+i)

]
dωn

}
.

(2.10)

3Not to confuse our notation with the three-point form rendering equation. The derivation here does not
perform the necessary change of integration domain yet.

4See A.1 for the origination of the formula.
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As an example, to solve Lpixel, we can first (somehow) obtain a solution for (2.10) with

k = 0 under steady-state. After that, we have

Lo (xk+1 → xk)|k=0 = Lo (x1 → x0) = Li (x1 → x0) . (2.11)

We can later substitute this result into the measurement equation, then Lpixel can be ob-

tained using any integration technique.

Photon mapping is a two-pass method in the sense (2.10) and (2.9) can be solved

separately, i.e., the former can be approximated by the photon mapping pass and the later

is solved during the visualization pass. One of the reasons that make photon mapping

efficient is that the solution for Li generated in the photon mapping pass is cached and

reused in the visualization pass.

Unbiased Particle Tracing

We now use the term particle in place of photon to describe the records generated for the

visualization pass. The choice is made due to the fact that the measurement interpretation

is capable to work with any emitted quantities. The following is a generalized version of

the measurement equation

Q =

∫
A

∫
Ω

Wt (xℓ+1 → xℓ)Li (xℓ+1 → xℓ) dωdA, (2.12)

where Q is an arbitrary quantity measured by the sensor response functionWt. Note that

the sensor domain A should not be restricted on a camera sensor. Any surface that is

a subregion of the 2-D manifold M formed by scene geometries can be a hypothetical

sensor.

Now we limit ourselves to the case of synthesising an image with length k + 1 paths

only, and we want to construct a lookup table for Lo (xk → xk−1) to facilitate the process.

Denoting the manifold formed by the reachability of length n = 1 paths starting from

lights as Mk. Samples of Li (xk+1 → xk) can be obtained by performing light tracing

from xk+1 and the sampled value Li (Xk+1 → Xk) is directly stored on Mk. Suppose

11
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M samples are stored, and the j-th one is written as Li (Xk+1,j → Xk,j). As each stored

sample is an unbiased estimate of the incoming radiance for length n = 1 paths from light

sources, the measurement Qk onMk can be estimated, also unbiasedly, as

Qk ≈
1

M

M∑
j=1

Wt (Xk+1,j → Xk,j)Li (Xk+1,j → Xk,j) . (2.13)

This summation indicates that any quantity that is linearly accumulable can be estimated

with a suitable choice ofWt.

2.2.2 The Zero Contribution Problem

Our goal is to compute Lo (xk → xk−1). From estimator (2.13), the quantity Qk should

be measured as radiance value. To find Wt for a radiance measure, the integral on k-th

vertex of the rendering equation is extracted as

Lo (xk → xk−1) =

∫
Ωk

Li (xk+1 → xk) f (xk+1 → xk → xk−1) cos (θk) dwk. (2.14)

Being a point measure of outgoing radiance on xk, it is equivalent to measure radiance on

Mk with a delta distribution5

∫
Mk

δ (x′k − xk)

∫
Ωk

Li · f (xk+1 → x′k → xk−1) cos (θk) dwkdA
′, (2.15)

where x′k are positions onMk and some arguments are omitted in the integrand for clar-

ity. Observing equation (2.15), it can be concluded that in order to obtain an unbiased

measurement of Lo, the hypothetical sensor response function should be defined as

Wt (xk+1 → x′k) = δ (x′k − xk) f (xk+1 → x′k → xk−1) cos (θk) , (2.16)

5A more rigorous form would be writing the equation as a Lebesgue integral.
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and a corresponding estimator for (2.15) can be derived from (2.13)

Lo (xk → xk−1) ≈

1

M

M∑
j=1

δ (Xk,j − xk) f (Xk+1,j → Xk,j → xk−1)Li (Xk+1,j → Xk,j) cos (Θk,j) .

(2.17)

Although M samples of Li on the k-th vertex were generated and stored as Li,j in

the unbiased particle tracing step 2.2.1 and those records can be utilized in the estima-

tor (2.17), this approach is of little to no benefit. To see this, suppose unidirectional path

tracing (UPT) is used to solve the pixel measurement equation (2.9), and let X ′
ℓ be the ℓ-

th randomly sampled vertex. The estimator is thus responsible for providing information

about Lo

(
X ′

k → X ′
k−1

)
. It is unfortuante, by the way Wt is structured, estimator (2.17)

now contains a term

δ (Xk,j −X ′
k) . (2.18)

UPT has zero probability to randomly sample an exact location X ′
k = Xk,j that is associ-

ated with a stored sample Li,j for it to utilize. As a result, length k + 1 path will always

have zero contribution to the final image.

To formally state the problem, δ (x′k − xk)’s infinitesimal bandwidth is the cause of the

zero contribution issue. As a side note, it is possible to use stored values Li,j by directly

connect sampled path vertexX ′
k−1 toXk,j . This technique is known as bi-directional path

tracing (BDPT) which is outside the scope of this chapter.

2.2.3 A Biased Solution

To solve the problem of zero contribution, photon mapping replaces the delta distribution

δ (x′k − xk) with a canonical kernel K (x′k − xk) that integrates to 1 over its support

∫
Mk

K (x′k − xk) dA = 1. (2.19)

13
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The normalization condition is of the essense since it ensures correct weighting of the

measured quantity. The kernelK, however, introduces biases to the integral (2.15) as well

as the estimator (2.17).

Proximity Bias

Proximity bias is commonly known as an intrinsic source of bias in density estimation

methods (we will see that both energy packet and measurement interpretations of photon

mapping are a form of density estimation in Section 2.3). Formally, it is present due to the

fact that a blurred equation

∫
Mk

K (x′k − xk)

∫
Ωk

Li · f (xk+1 → x′k → xk−1) cos (θk) dwkdA, (2.20)

is solved instead of the original one (2.14). Implementation-wise, the estimator for (2.20)

would be

1

M

M∑
j=1

K (Xk,j − xk) f (Xk+1,j → Xk,j → xk−1)Li (Xk+1,j → Xk,j) , (2.21)

which requires the ability to gather particle records Lk,j where kernel K has non-zero

value. Such reconstruction scheme will inevitably induce aliases if the variation of the

lighting phenomena is above the Nyquist frequency. Several techniques have been pro-

posed to better reconstruct lighting information, including photon differentials [27] and

anisotropic kernels [6]. Progressive algorithms solve this issue by gradually reduce the

bandwidth of K and eventually achieve infinite amount of sample points in an infinitesi-

mal region, eliminating all biases (in the limit, see 2.5).

Topological Biases

We see topological biases as a by-product of proximity bias. Topological biases arise due

to the assumption that the surface geometry, i.e.,Mk, is locally flat around the position of

a particle record, which is what the kernel normalization condition (2.19) usually depends

on. Such an assumption can easily break down in several scenarios
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Several methods exist to directly tackle topological biases, including ray maps [13]

and photon ray splatting [16].

Generalization

So far, the mathematical framework presented earlier was limited to the case of length

k+1 paths only, and particle records were generated for length 1 paths from lights. Note,

however, the derivation can be easily extended to arbitrary path lengths by substituting

different values of k. As long as particle records Li,j are generated unbiasedly, the esti-

mator (2.21) holds for any traced length6

2.3 Kernel Density Estimation

The estimator in energy packet (2.8) and measurement intepretations (2.21) both share the

same form
1

M

M∑
j=1

K
(
Xn

j − xn
)
wj, (2.22)

where wj is some sample weight generated by a random process. In situations where wj

is almost a constant or its local variation is low, the estimator is effectively the same as

kernel density estimation [29], which implies that they can share similar properties. Kernel

density estimation provides a non-parametric way to esimate a probability density p (x)

with only observable samples being drawn from it. We denote the estimated probability

density as p̂ (x). The method states that to obtain an approximation of p (x), the following

estimator can be used

p (x) ≈ 1

Mh

M∑
i=1

K
(
x− xi
h

)
= p̂ (x) , (2.23)

and h is a variable bandwidth7.

It is worth noting that in photon mapping methods, the target function is usually the ra-
6The correctness of this result is straightforward to see in a bi-directional radiance estimation framework.

For a more rigorous description, see [31, Appendix 4.A].
7It is possible to generalize the kernel density estimator to n dimensions, see [26, Section 16.2.2]. We

kept the univariate form here for simplicity.
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diance fieldLo, which is neither normalized nor estimatedwith unweighted samples. From

the weighted estimator (2.22), it would be more suitably called kernel smoother, which is

a statistical technique to obtain function value by a weighted average of neighboring sam-

ples. Nevertheless, such observation is useful as it enabled us to analyze induced errors,

e.g., mean integrated square error (MISE) or more commonly used asymptotic integrated

mean square error (AMISE).

2.4 The Complete Photon Map

Normally, photon maps contain particle records Lj that will be utilized to construct sam-

ples for estimating outgoing radiance. Denoting a photon map that stores M length8 n

particles as Pn,M . A photon map can be the combination ofN maps, each with a different

stored length. We call the one that combines all path lengths and phonemona as a complete

photon map Pc defined as

Pc = PZ+,NM =
N∪

n=1

Pn,M , N → ∞. (2.24)

With finite memory, such photon map is possible using russian roulette and omitting

zero-weight particles during the tracing stage as they will not contribute to the summa-

tion (2.25).

In order to solve themeasurement equation and obtain our goal,Lpixel, some integration

technique is chosen and we use the photon map as a lookup table for Li (xk+1 → xk) with

arbitrary k’s. Equivalently, since Pc stores estimations for all kinds of path length, it is the

photon map to use if all light paths are required. The complete photon radiance estimator

can now be defined as

Lo (x→ x′) ≈ 1

M

|Pc|∑
j=1

Wt (x,Xj)Pc,j. (2.25)

The sensor response functionWt has finite support in most if not all algorithms, and non-

8Path length starting from lights.
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contributing particles are often culled by spatial acceleration structures. As a result, a

single range query to Pc will suffice for calculating the summations in the estimator. Also

note the 1/M factor in the estimator, as we are effectively approximating N integrals at

the same time, and energy from all path lengths sould accumulate to Lo (x→ x′) (as far as

geometric optics is concerned, energy from different sources can be linearly accumulated).

To simplify the expression and for future generalizations, we denote the arbitrary mea-

surement Q taken on some location ξ (not necessarily 2-D) which is approximated using

a photon map as

Q (ξ, h,Pn,M) , (2.26)

with h being the bandwidth used for the approximation. As an example, equation (2.25)

can now be written as

Lo (x→ x′) ≈ L (x→ x′, r,Pc) . (2.27)

2.5 Progressive Extensions

It is possible to eliminate energy estimation bias using photon maps. Generally speaking,

a consistent9 result is achieved via progressively shrinking the bandwidth of the kernel in

use along with other techniques in order to arrive at the state of infinite photon density.

2.5.1 The XPPM Family

Progressive photonmapping (PPM) [11] and stochastic progressive photonmapping (SPPM) [10]

are the classic progressive extensions of photon mapping. They are capable of achieving

a zero-bias result in the limit, i.e., equal to the ground truth. However, they require a large

amount of memory for storing additional information on path vertices starting from the

camera, no matter the implementation is a canonical or reversed one [14].

To further reduce the memory usage of SPPM, a probabilistic based derivation of

SPPM was proposed [24] (we call it probabilistic progressive photon mapping, PPPM).

9Hachisuka’s Five Common Misconceptions about Bias in Light Transport Simulation is a good read to
understand unbiasedness and consistency in light transport algorithms.
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PPPM does not require the storing of any additional information on path vertices to con-

sistently estimate light energy using photon maps. This is possible as the convergence of

SPPM is, in fact, not dependent on the local kernel bandwidth and can be replaced by a

global bandwidth that is shared by all path vertices. The introduction of adaptive progres-

sive photon mapping (APPM) [22] not only significantly reduce the variance in energy

estimation, they also showed that the global bandwidth does not need to be calculated

progressively.

We call these methods collectively as the XPPM family, since they are all progressive

variants of the photon mapping algorithm.

2.5.2 Bi-directional Unification

There are certain types of paths that can be handled better with unbiased methods such

as path tracing, and some are better with density estimation based methods like photon

mapping. By formulating density estimation and bi-directional path tracing (BDPT) un-

der a unified mathematical framework, it is possible to combine the XPPM family with

BDPT to achieve better results. Notable unifications are vertex connection and merging

(VCM) [8] and unified path sampling (UPS) [12].

In a unified framework, density estimation is being treated as a new sampling tech-

nique in addition to all camera and light subpath combinations. Connecting sampled sub-

paths originated from camera and light directly is called vertex connection, while density

estimation connects nearby subpaths and is called vertex merging. These operations can

be further combined (weighted) using multiple importance sampling [32].

These techniques are however often being considered heavyweight implementation-

wise. Nonetheless, several production systems implemented VCM/UPS including Pixar’s

RenderMan (exposed as PxrVCM integrator) and Weta Digital’s Manuka [5].

2.5.3 Mollifier, Relaxation, and Beyond

Even with a unified framework for XPPM and BDPT, there exist paths that are unsam-

plable with both methods, meaning that scenes dominated by those light transport paths
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may be partially or completely black if rendered using VCM/UPS (see Section 5.1.1 for

more information). One of the first light transport algorithms to address such issue is the

path space regularization (PSR) framework [23], which is possible to apply to all path

sampling methods. PSR is based on selectively mollify the singularities encountered in a

scene description, such that they are no longer unsamplable. In theory, their mathematical

framework can describe all possible consistent methods.

A unique variant of progressive photon mapping is photon relaxation. Progressively

relaxed photon map [30] can lead to low variance energy estimation by virtually balancing

the stored photons, and feature detection can be added for preserving fine details such as

complex caustics.

Finally, extending photon mapping to volumetric light transport is also an ongoing

area of research. In addition to Jensen’s work [18], it is worth noting that by increasing the

dimensionality of photon samples (from photon points, beams to photon planes, volumes)

it is possible to achieve unbiased energy estimation using photon maps [1] [4].
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Chapter 3

Derivations of Photon Cone Focusing

In this chapter, we extend canonical density estimation techniques for image synthesis

to higher dimensions. In particular, our formulation progressively refines the radiance

estimation on a point in space and converges to the true radiance function in the limit.

The derivation focuses on estimating Lo on the scene manifoldM, and the mathematical

framework makes extensions to volume rendering straightforward. Also note that it is

possible to estimate arbitrary energy function provided the particle records are correctly

traced 2.2.

The following sections focus on mathematical analyses of transient and statistical be-

havior of the photon cones, which is based on a 4-D kernel (3.1). In Section 3.2, we

modified canonical radiance estimate into one that directly measure the outgoing radiance

without the need of evaluating material properties during the visualization pass. Later

from Section 3.3 to 3.5, formal proof is given which shows that the proposed method con-

verges to the ground truth. Finally, the pseudocode of the algorithm is given in Section 3.6,

and generalizations that make the method applicable in more scenarios are shown in the

last section (3.7).

3.1 Choosing a 4-D Kernel

As our method is intended to directly reconstruct outgoing radiance Lo from particle

records stored on the scene manifold M, a 4-D kernel is required due to the fact that
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Lo is a 4-D function (possible parameterizations include (x, ω) or (x0, x1)). Denoting the

kernel asK (ψ′ − ψ), with ψ being a joint representation of position and direction, we first

decompose it into a product of positional Kp and directional Kd parts

K (ψ′ − ψ) = Kp (x
′ − x)Kd (ω

′ − ω) . (3.1)

The normalization condition from (2.19) should also be obeyed for correct radiance mea-

sure ∫
Ω

∫
M

Kp (x
′ − x)Kd (ω

′ − ω) dAdω = 1. (3.2)

For positional part, all the variants from density estimation literatures can be used. In

case of minimizing the asymptotic integrated mean square error (AMISE), studies have

shown [29, Chapter 3] [15, Section 3] that the performance of a variety of kernels do not

differ much, including a theoretically optimal one1. Thus, our choice ofKp is a box kernel

in 2-D due to its computational efficiency (requiring only a scalar multiplication)

Kp (x
′ − x) =


1

πr2
, if ∥x′ − x∥ < r

0, otherwise.
(3.3)

For directional part, a kernel that is easier to perform normalization and change of vari-

ables is preferred since this would facilitate the analysis of convergence. Our assumption

is that the choice of directional kernel does not affect performance similar to the case in

positional kernels, as well as their product. Several kernels were investigated, including

von Mises-Fisher distribution, GGX [34], and directional variants of positional kernels.

We pick a distribution that has a shape of cone (essentially a directional extension of box

kernel) as it meets our requirements decently

Kd (ω
′ − ω) =


1

2π [1− cos (θω)]
, if θ (ω′ − ω) < θω

0, otherwise.
(3.4)

1They all have the efficiency metric C (K) close to 1, while the Epanechnikov kernel has C (K) = 1.
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To normalize the kernel, integrating over its support and scale the result to 1 is neces-

sary. Let S = Ω ×M as K’s support, it can be shown that a properly normalized kernel

is ∫
S
K (ψ′ − ψ) dψ

=

∫
Ω

∫
M

Kp (x
′ − x)Kd (ω

′ − ω) dAdω

=

∫
Ω

∫
M

1

2π2r2 [1− cos (θω)]
dAdω

= 1.

(3.5)

Finally, we write our kernel K (ψ′ − ψ) in its local space as

Kσ =
1

2π2σ2 [1− cos (t (σ))]
=

1

Cσ

, (3.6)

where σ controls the kernel’s bandwidth, and t (σ) is a function that maps input bandwidth

to θω. Generally, in order to achieve convergence with the kernel, t (σ) should satisfy the

basic condition that if

σ → 0, t (σ) → 0. (3.7)

3.2 Photon Cone Measurement

In Section 2.2.1, we show that typical particle tracing process can be thought of as integrat-

ing incoming radianceLi over a hypothetical sensor on scene manifoldMwith subtended

incoming solid angle Ωi

Q =

∫
M

∫
Ωi

Wt (xℓ+1 → xℓ)Li (xℓ+1 → xℓ) dωidA. (3.8)

Under the assumption that Lo around xℓ and ωo gives a good approximation of the actual

radiance (or equivalently, nearby BSDFs to BSDF at xℓ), the sensor is restructured into
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one that measures outgoing quantity directly

Q =

∫
Ωo

∫
M

∫
Ωi

Wt (xℓ+1 → ψ′)Li (xℓ+1 → x′ℓ) dωidAdωo

=

∫
Ωo

∫
M
W ′

t (ψ
′)Lo (ψ

′) dAdωo.

(3.9)

If radiance estimate on ψ is desired, W ′
t can be determined in accordance with equa-

tion (2.16) and our kernel Kσ (3.6), which is simply

W ′
t (ψ

′) = Kσ (ψ
′ − ψ) . (3.10)

An estimator for the measurement would then be

Lo (ψ) ≈
1

M

|Pc|∑
j=1

Kσ (Ψj − ψ)
f (Xℓ+1,j → Ψj)Pc,j

pΩo (Ψj)

=
1

M

|PΛ|∑
j=1

Kσ (Ψj − ψ)PΛ,j

= L (ψ, σ,PΛ) ,

(3.11)

where PΛ is what we refer to as the complete photon cone map here and L being a photon

cone radiance estimate.

Note that to render a raster image, the ultimate goal is to compute pixel values Iu,v.

This would correspond to another measurement equation located on the image plane, i.e.,

camera sensor. It is defined as (omitting the subscripts of pixel values as each of them has

the same form)

I =

∫
Asensor

∫
Ω

We (x1 → x0)Li (x1 → x0) dωdA, (3.12)

which can be solved using standard Monte-Carlo techniques. A corresponding estimator

is written as2

I ≈ Î =
1

N

N∑
i=1

∞∑
n=1

Fn (X
n
i )

Pn (Xn
i )
, (3.13)

2For a concrete example, see appendix A.
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where Fn represents the measurement contribution function [31, Chapter 8] for length n

path and Pn is the probability density for generating the sampleXn
i .

Suppose PΛ is available, estimator (3.13) can be computed more efficiently by lookup

radiance values withL (ψ, σ,PΛ). If the photonmap is involved on the k-th vertex starting

from camera, the pixel estimator can be written as

Î ≈ 1

N

N∑
i=1

k−1∑
n=1

Fn (X
n
i )

Pn (Xn
i )

+
1

N

N∑
i=1

F ′
k

(
Xk

i

)
L (Ψk, σ,PΛ)

Pk

(
Xk

i

) , (3.14)

where F ′
k is Fk without the direct radiance sample Le (Xk → Xk−1). The former part

of the estimator will have convergence properties inherit from the sampling method of

choice; while the later part, the photon cone pixel estimator, will be thoroughly analyzed

in the following sections.

3.3 Properties of Photon Cone Radiance Estimate

In this section, the variance and expected error of the photon cone radiance estimate is

being analyzed. Our approach is similar to the one made by Knaus and Zwicker [24], with

several differences that are directly related to our formulation. The derivations here are

essential for later decisions and proofs.

3.3.1 Variance of the Estimation Error

Lemma 3.1. Let εσ be the estimation error produced by using the photon cone radiance

estimate with a sufficiently small bandwidth σ for length k paths. Then

Var[εσ] ∝
1

σ2 [1− cos (t (σ))]
.

Proof. LetLo (ψ) be the true radiance function for the estimator. Extracting particles with

25



doi:10.6342/NTU201901709

path length k, εσ can be written as

εσ = L (ψ, σ,PΛ,k,M)− Lo (ψ)

=
1

M

M∑
j=1

Kσ (Ψj − ψ)Lj − Lo (ψ) .
(3.15)

It has been shown in appendix B.1 that Var[εσ] can be expressed as

1

M

{
E[Kσ]

2Var[L] + Var[Kσ]
(
E[L]2 + Var[L]2

)}
. (3.16)

The equation can be further simplified by analyzing statistical properties related toKσ (Ψ− ψ):

E[Kσ (Ψ− ψ)] =

∫
S
Kσ (ψ

′ − ψ) p (ψ′) dψ′

≈ p (ψ)

∫
S
Kσ (ψ

′ − ψ) dψ′

= p (ψ) ,

(3.17)

and

Var[Kσ (Ψ− ψ)] = E[K2
σ (Ψ− ψ)]− E[Kσ (Ψ− ψ)]2

≈
∫
S
K2

σ (ψ
′ − ψ) p (ψ′) dψ′ − p2 (ψ)

≈ p (ψ)

∫
S
K2

σ (ψ
′ − ψ) dψ′ − p2 (ψ)

= p (ψ)

∫
S

[
1

Cσ

]2
dψ′ − p2 (ψ)

=
p (ψ)

Cσ

− p2 (ψ) .

(3.18)

The analyzation is valid under the assumption that provided kernel bandwidth is suffi-

ciently small, p (ψ′) is mostly constant within the kernel support S, i.e., p (ψ′) ≈ p (ψ).

This is especially true since our method will reduce σ after every iteration 3.4.
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Substituting (3.17) and (3.18) back into equation (3.16), we have

Var[εσ] ≈
1

M

{
p2 (ψ)Var[L] +

[
p (ψ)

Cσ

− p2 (ψ)

] (
E[L]2 + Var[L]

)}
=

1

M

{
p (ψ)

Cσ

E[L]2 + p (ψ)

Cσ

Var[L]− p2 (ψ)E[L]2
}
.

(3.19)

Finally, it is possible to approximate p (ψ) with kernel density estimation

p (ψ) ≈ p̂ (ψ) =
1

M

M∑
j=1

Kσ (ψ − ψ′) .

It follows directly that asM is usually on the order of tens of millions, the density p (ψ)

would be much less than the kernel it builds upon. As a result, we can safely use the

approximation 1/Cσ ≫ p (ψ) as long as particles do not form a dense cluster, then obtain

the expression

Var[εσ] ≈
1

M

{
p (ψ)

Cσ

E[L]2 + p (ψ)

Cσ

Var[L]
}

=
p (ψ)

MCσ

[
E[L]2 + Var[L]

]
∝ 1

Cσ

=
1

σ2 [1− cos (t (σ))]
.

(3.20)

■

The result can also be justified by the fact that the estimated radiance function will

inherit the characteristics of the shape the kernel function has (it is essentially a weighted

sum 2.3), and large σ will smooth out irregular sample distributions hence lower the vari-

ance.

3.3.2 Expected Estimation Error

Similar to 3.3.1, with εσ being the photon cone radiance estimation error, its expected

value will be useful for later derivations.
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Lemma 3.2. The expected estimation error εσ has the property

E[εσ] ∝ σ2.

Proof. It has been shown in appendix B.2 that E[εσ] can be written as

E[Kσ (Ψ− ψ)]E[L]− Lo (ψ) . (3.21)

The term that is related to the bandwidth can be expanded in the way similar to equa-

tion (3.17), i.e.,

E[Kσ (Ψ− ψ)] =

∫
S
Kσ (ψ

′ − ψ) p (ψ′) dψ′, (3.22)

except that we will instead perform Taylor expansions on the integrand in order to ob-

tain meaningful results for E[εσ]. Treating position and direction samples in S as locally

independent variables3, p (ψ′) can be decomposed as a product pm (x′) pd (ω
′) which is

only valid in the vicinity of ψ. Expanding the density functions separately at (x, ω) then

convolve them, we write the intermediate form as

pm (x′) pd (ω
′) =[

pm (x) + (x′ − x)
T · ∇pm (x) +

1

2!
(x′ − x)

T
Hm (x) (x′ − x) + · · ·

]
×[

pd (ω) + (ω′ − ω)
T · ∇pd (ω) +

1

2!
(ω′ − ω)

T
Hd (ω) (ω

′ − ω) + · · ·
]
,

(3.23)

where Hm and Hd are the Hessian matrices in Cartesian and spherical coordinates, re-

spectively. After substituting the convolved density series back into equation (3.22), most

termswill integrate to zero as they are oddmoments of a distribution, e.g.,
∫
D
pni K (p) dp =

0 for odd n’s. A series of algebraic operation (see appendix B.3) then shows that we are

left with the form pm (0) pd (0) + C · σ2, with C being a constant. We can now write the

3This is similar to the Ψ and L case; since S is comparatively small to the scale of the scene.
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expected estimation error as

[
pm (0) pd (0) + C · σ2

]
· E[L]− Lo (ψ) . (3.24)

Exploiting the fact that using a kernel with infinitesimal bandwidth as Wt will measure

the true outgoing radiance (3.9), Lo (ψ) can be similarly expressed as E[δ (Ψ− ψ)]E[L].

The expected value of a delta kernel is simply the density function sampled at the local

origin, leading to the following result

Lo (ψ) = pm (0) pd (0) · E[L]. (3.25)

Substituting into equation (3.24), we then obtain the relation

Var[εσ] =
[
pm (0) pd (0) + C · σ2

]
· E[L]− pm (0) pd (0) · E[L]

= C · E[L] · σ2

∝ σ2.

(3.26)

■

This result naturally fits our expectation since larger kernel bandwidths smooth out

finer details, including sample noise caused by the stochastic process of tracing particles;

and expected estimation error decreases with smaller bandwidths as it measures the radi-

ance function in a way closer to what the original rendering equation gives.

3.4 Progressive Bandwidth Shrinkage

Asmost progressive density estimation rendering algorithms, our method rely on the same

principle to achieve a consistent result (converges to the true energy function on the image

plane); the idea is to allow the estimation variance grow by a certain amount in each it-

eration, while making the averaged variance and expected error over N iterations vanish.

Hachisuka et al. [11] first propose the technique that satisfy these criteria on the 2-D do-
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mainM, which is later formally proved in [24]. In the following sections, we will show

that our photon cone radiance estimate can also achieve convergence in the 4-D space

S = Ω×M.

In the i-th iteration on the joint locationψ, the variance of the estimation error Var[εσ,i]

is allowed to grow in the next iteration in the following manner

Var[εσ,i+1]

Var[εσ,i]
=

σ2
i [1− cos (t (σi))]

σ2
i+1 [1− cos (t (σi+1))]

=
i+ 1

i+ α
(3.27)

with Lemma 3.1 and the condition 0 < α < 1.

3.5 Proof of Convergence

In this section, we prove that the formulation of Photon Cone Focusing converges to the

solution for the rendering equation. Specifically, consider the mean squared error (MSE)

of the pixel estimate Î (3.14)

MSE
(
Î
)
= E[

(
Î − I

)2
] = Var[Î] +

(
E[Î]− I

)2
, (3.28)

the decomposition into variance and bias makes it clear that both termsmust approach zero

for a consistent result, i.e., Var[Î] = 0 and E[Î] = I providing the number of iterations

N → ∞.

It has been shown in [24, Appendix C] that Var[Î] = 0 is true if

1

N2

N∑
i=1

Var[εσ,i] = Var[εσ,N ] → 0, (3.29)

which requires the variance of the average estimation error Var[εσ,N ] converge to zero

(proved in 3.5.1). Also, the condition for E[Î] = I is similarly derived in [24, Appendix

D], which requires the following condition to hold, writing in our notation as

1

N

N∑
i=1

E[εσ,i] = E[εσ,N ] → 0. (3.30)
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This condition states the prerequisites for the expected average estimation error E[εσ,N ] to

converge to zero (proved in 3.5.2).

Finally, the convergence of the photon cone radiance estimate (3.14) is summarized in

Section 3.5.3.

3.5.1 Variance of the Average Estimation Error

As we follow the same variance increasing scheme in most progressive density estimation

literatures, the derivation is only dependent on the ratio of Var[εσ,i] between successive

iterations. It has been proved in [24, Appendix E] that Var[εσ,N ] is of the order O (N−α),

satisfying (3.29) with sufficiently large N .

3.5.2 Expected Average Estimation Error

We show that the following condition on E[εσ,N ] is true, confirming the required condition

of convergence (3.30).

Lemma 3.3. The expected average estimation error E[εσ,N ] converges to the order

E[εσ,N ] = O
(
N

α−1
p+1

)

with p ≥ 1.

Proof. The implicit bandwidth reduction rule (3.27) has an asymptotic form (see equa-

tion B.13) under small angle approximation:

Var[εσ,i+1]

Var[εσ,i]
=
i+ 1

i+ α
≈ σ2

i t
2 (σi)

σ2
i+1t

2 (σi+1)
. (3.31)

Let t (σ) being a polynomial of order p ≥ 1 (the lowest exponent a monomial has)4, i.e.,

satisfying t (σ) = O (σ) and fulfilling the other requirement5. The reduction rule can be

4Note that the highest exponent a monomial has is what we called degree throughout the thesis, which
is the opposite of order

5The additional constraint to apply is (3.7)

31



doi:10.6342/NTU201901709

expressed (asymptotically) as

σ2
i σ

2p
i

σ2
i+1σ

2p
i+1

=

(
σi
σi+1

)2p+2

. (3.32)

With Lemma 3.2, it turns out that the expected average estimation error in the i-th iteration

is related to the bandwidth reduction rule after some manipulations

E[εσ,i+1]

E[εσ,i]
=
σ2
i+1

σ2
i

=

(
i+ α

i+ 1

) 1
p+1

. (3.33)

We can now write the expected average estimation error in terms of the error on first

iteration

E[εσ,i] = E[εσ,1] ·
i−1∏
k=1

(
k + α

k + 1

) 1
p+1

= E[εσ,1]
(
1

i

) 1
p+1

·
i−1∏
k=1

(
k + α

k

) 1
p+1

.

(3.34)

Recall one of the identities of the beta function B (a, b) = B (a, b) · (b/ (a+ b)), E[εσ,N ]

can be expressed and rearranged as follows:

E[εσ,N ] =
1

N

N∑
i=1

E[εσ,i]

=
E[εσ,1]
N

[
1 +

N∑
i=2

(
i−1∏
k=1

(
k + α

k

) 1
p+1

)
·
(
1

i

) 1
p+1
]

=
E[εσ,1]
N

[
1 +

N∑
i=2

(
1

B (α, i)α · i

) 1
p+1
]

=
E[εσ,1]
N

[ N∑
i=1

(
1

B (α, i)α · i

) 1
p+1
]

=
E[εσ,1]

N · α1/(p+1)

[ N∑
i=1

(
1

B (α, i) · i

) 1
p+1
]
,

(3.35)

while the last steps use the fact that B (α, 1) = 1/α. Borrowing the result from [24,
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Appendix F], we see that

N∑
i=1

1

B (α, i) · i
=

1

B (α,N) · α
+

1

B (α,N) ·N
− 1 = Θ (Nα) . (3.36)

Here we form an inequality to bound the series in (3.35). Hölder’s inequality for counting

measure states that for a and b in the open interval (1,∞)with 1/a+ 1/b = 1, we have

N∑
i=1

|xiyi| ≤

(
N∑
i=1

|xi|a
) 1

a
(

N∑
i=1

|yi|b
) 1

b

. (3.37)

Substituting the series in (3.35) as yi, and let xi = 1, a = (p+ 1) /p, b = p+ 1, we have

N∑
i=1

(
1

B (α, i) · i

) 1
p+1

≤ N
p

p+1 ·

(
N∑
i=1

1

B (α, i) · i

) 1
p+1

. (3.38)

Using the bound provided by (3.36), the RHS of the inequality is bounded as

N
p

p+1 ·Θ
(
N

α
p+1

)
= Θ

(
N

p+α
p+1

)
. This corresponds to the fact that

E[εσ,N ] =
E[εσ,1]

N · α1/(p+1)
·O
(
N

p+α
p+1

)
= O

(
N

α−1
p+1

)
. (3.39)

■

3.5.3 Convergence of the Pixel Estimator

We have shown that in our formulation of photon cones, Var[Î] = 0 and E[Î] = I ,

which means the estimated pixel value Î is an exact match of the true value I . Recall

that Var[εσ,N ] = O (N−α) and E[εσ,N ] = O
(
N (α−1)/(p+1)

)
, implying a larger value of α

sacrifices estimation error for smaller variance, and vice versa. As specified earlier, the

value of α should be limited in the open interval (0, 1). This is easy to see now: for α = 0,

Î will always have non-zero amount of variance, and for α = 1, the estimation error of Î

is never zero.
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3.6 The PCF Method

We now give a basic pseudocode describing the PCFmethod (algorithm 1). As our method

is based on the probabilistic derivation of the progressive photon mapping algorithm [24],

the main loop can be trivially parallelized, and no statistical records for photon cones need

to be stored. The method requires a photon cone map which is a data structure for finding

nearby particle records. i.e., photon cones in the joint position-directional space ψ.

Algorithm 1: Basic Implementation of PCF

Input: Scene, α, p, σ1
Output: HDR Radiance Buffer (Î)

1 Î := 0 // zero the buffer
2 σ := σ1
3 perform any Scene pre-processing, e.g., Section 4.2.3
4 while less than required number of iterations do

/* Photon Cone Shooting Pass */
5 while photonConeBuffer is not full do
6 hitPoints := unbaised particle tracing // all surface types are valid
7 for each hitPoint do
8 photonConeBuffer += sample photon cones

9 build photonConeMap given photonConeBuffer // e.g., a kD-tree
/* Visualization Pass */

10 while camera samples not exhausted do
11 L := 0
12 hitPoints := unbaised ray tracing
13 index := find a suitable point in hitPoints // e.g., delta/glossy/diffuse surface
14 L += estimate radiance for path lengths ≤ index
15 L += estimate radiance using photonConeMap for path lengths > index
16 add L as a sample to Î
17 update σ according to equation (3.27)

For implementation, the angular bandwidth θω can be inferred by themapping function

(t (σ)) of choice, which is assumed to be a polynomial of order p ≥ 1. Each iteration will

refine the image with more details as the kernel bandwidth shrinks. In the visualization

pass, any unbiased method can be used to estimate radiance for path lengths smaller or

equal to the index found. The photon cone map estimate in the next line will include all

missing path lengths. The two-part estimation process corresponds to the two summations

in equation (3.14). Note that it is also possible to perform nested PCF, i.e., substituting
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the unbiased radiance estimation stage with another photon cone radiance estimation. This

will have the extra benefit of dissolving (eliminating) any singularities encountered, mak-

ing PCF robust in terms of the number of captured light paths.

Generating particle records (photon cone samples) can be done via standard Monte-

Carlo sampling. In the example shown in fig. 3.1, a corresponding photon cone sample

Lo (Ψ) would be calculated as

Lo (Ψ) =
Le (X0 → X1) cos (Θ0) f (X0 → X1 → X2) cos (Θ1) f (X1 → X2 → X3)

pdfA (X0) pdfω (X0 → X1) pdfω (X1 → X2) pdfω (X2 → X3)
.

(3.40)

Other path lengths follow accordingly.

𝑥1

𝑥2

𝑥3

𝑥0

𝑓

𝑓
𝐿𝑒

𝑊𝑡′

Figure 3.1: The generation of photon cone samples in the case of path length = 2. We
store photon cones on x2 (directions indicated with dotted arrows).

3.7 Generalizations

So far, our derivations are based on the conical kernel we chose in Section 3.1. In the

following sections, we discuss possible generalizations of photon cone focusing.
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3.7.1 Arbitrary 4-D Kernels

As the kernel bandwidth shrinks, any kernel will approach a Dirac delta in IR4, and it

is possible to perform a similar derivation (described in Section B.3) to obtain the same

expression for E[Kσ (Ψ− ψ)]. We do not explore in such directionmuch aswe believe that

kernel shape should not affect the performance of energy estimation (see how we choose

the kernel in Section 3.1), and the additional cost of evaluating more complex kernel is

likely not worth the small gain in terms of AMISE.

3.7.2 Participating Media

Our derivation is readily applicable to the situation where participating media is present.

The kernel function would remain the same in the angular domain, while the spatial do-

main should be changed into a sphere, making it a 5-D function. The rest of the derivation

should be the same (up to changing the spatial domain into a 3-D space), making photon

cone focusing a consistent method in volumetric light transport, which is similar to what

Knaus and Zwicker discussed6 in their paper [24, Section 3].

6However, we suspect that Knaus and Zwicker may have made a mistake on generalizing their results to
volume rendering, as we do not agree E[ϵ (x, r)] ∝ r3, it should remain r2.
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Chapter 4

The PCF Rendering Algorithm

We introduce a robust global illumination (GI) algorithm that eliminates all singularities

in a scene, while maintaining the path reuse property of the XPPM family (Section 2.5.1).

The core of the algorithm is based on photon cone focusing (Chapter 3, hence the name

PCF) with several enhancements and specializations. Our formulation of the photon cone

map can be seen as a standalone light field representation, which does not require fetching

and evaluating material properties during radiance queries. In this chapter, we will explore

the details of the PCF rendering algorithm.

This chapter bridges between theories from Chapter 3 and practical implementations.

First, we introduced several guiding techniques for photon cones in Section 4.2; which

includes BSDF importance sampling, direct camera connections, and a conical importon

map. Later, with all these techniques, we show that it is possible to leverage all their

benefits by multiple importance sampling in Section 4.3. Finally, possible extensions for

future work are explored in the last Section 4.4. This chapter provides essential knowledge

to understand high-level concepts of the algorithm.

4.1 A High-Level Overview

Our rendering pipeline is an iterative one that refines the rendered image with higher fre-

quency details in each iteration. Inside each iteration, we use photon cone maps to record

an approximation of the outgoing energy from the underlying surface. The type of light
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scattering event can be diffusive, glossy and specular, and can all be recorded by pho-

ton cones. Later a path sampling process starting from the camera will utilize the energy

cached by photon cones to form an image (assembling different component of the lighting

phenomena into a final accumulation buffer) on the camera sensor. A written pseudocode

of the algorithm can be found in Section 3.6.

4.1.1 Storing and Querying Photon Cones

As the case of photon mapping where an acceleration structure is constructed over particle

records (photons) for faster lookup, we need a similar data structure for photon cones. In

our implementation, we use point kD-tree for storing photon cone’s spatial position (3-

D coordinates) and use simple linear search for the angular domain for nearest neighbor

queries. This is what we called the photon cone map. The reason why we did not include

the angular domain and construct a 5-D acceleration structure is that cone samples are

highly coherent in the angular domain. Assuming proper importance sampling, most of the

cone directions will cluster around specific angles due to BSDF importance sampling, next

event estimation on camera, or importon guidance (this will be discussed in next sections),

and we feel that the gain in performance is not worth the additional cost in memory and

construction time. Moreover, higher dimensional trees are often less efficient due to curse

of dimensionality.

During the camera path sampling process, we query the photon cone map and obtain

a list of photon cones that are simultaneously within a certain radius in the spatial domain

(σ) and a certain angle in the angular domain (t (σ)). With the ability to efficiently execute

nearest photon cone queries, it is now possible to perform various operations on the list for

each path vertex, including importance sampling according to cone radiance/importance.

4.1.2 Controlling Variables

Till now, we have introduced many variables during the derivation of PCF 3. A summary

of selected variables that are essential for controlling the rendering algorithm is given in

the following table 4.1, most of them also appear as input parameters for the renderer in
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our implementation.

Mathematical Symbol Description Range

N Number of refinement iterations performed ≥ 1

M Number of photon cones used in each iterations ≥ 1

S Number of samples per pixel ≥ 1

σ1 The initial contributing radius of each photon cone
in the spatial domain

[0,∞)

θ1 The initial algular bandwidth where t (σ) is derived
from

[0, 2π]

α Controlling the rate of shrinkage of kernel band-
width

(0, 1)

p Controlling the relative rate of shrinkage between
spatial and angular domain

[1,∞)

Table 4.1: Summarizing important variables for controlling the PCF rendering algorithm.

For scenes with simple and moderate complexities, usingM = 2M , S = 4, σ1 ≈ 0.1,

θ1 ≈ 18 (degrees), α ≈ 0.2 and p ∈ [1, 2] should be a good start. Increasing θ1 to

more than 60 degrees is not recommended as it tends to over blur angular features such

as specular highlights and would require a prohibitedly largeN for the rendered image to

converge.

α and p play an important role in the rate of convergence of the algorithm. Smaller α

gives faster overall bandwidth shrinkage and larger α gives the opposite effect. However,

one should not specify overly small α values as it will result in a large variance in radiance

estimation. This is hard to recover from, even with a large number of iterations, and

we can afford to trade some bias for a smaller variance to obtain a cleaner image. On

the other hand, p signifies a tradeoff of variance and bias between spatial and angular

domain of photon cones. Larger pmakes angular bandwidth shrink faster relative to spatial

bandwidth, which is good for surfaces with high-frequency angular lighting phenomena

(for example, mirrors). Smaller pmakes spatial bandwidth shrink faster relative to angular

bandwidth and can better resolve fine textures. The relation of α and p can be easily

understood from the illustration (fig. 4.1).
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Figure 4.1: The effect of α and p on the shape of the kernel. The disk and cone represent
spatial and angular bandwidth of photon cones, respectively.

4.2 Guiding Cone Samples

Although it is possible to obtain a rendered image with global illumination effects by

directly visualize the photon cone map since it is essentially a light field representation,

the result can be fairly noisy and may take quite a lot of time to converge due to the

stochastic nature of the cone positions and directions. This can be seen in fig. 4.2.

Several sampling techniques for photon cones are proposed to greatly increase their ef-

fectiveness in representing the surface energy function. In the following sections, we intro-

duced three kinds of sampling techniques, including BSDF importance sampling (4.2.1),

camera-based next event estimation (4.2.2) and importon based importance sampling (4.2.3).

4.2.1 BSDF Importance Sampling

A typical approach is to importance sample the BSDF with or without Lambert’s cosine

term. The rationale behind this sampling technique is that if the BSDF has a large value on

ωo givenωi and a position x, then the radiance functionLo (x, ω)may, too, has a large value

on ωo. As Lo (x, ωo) is likely to have higher contribution to the final image, we should

sample ωo more comparing to other directions centered on x. The situation is especially

true for surfaces with low roughnesses since their BSDF often contains concentrated peaks
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Figure 4.2: Directly visualize Hachisuka’s torus scene using photon cone map, without
applying any sampling techniques mentioned later. The image is refined with 5000 itera-
tions and still contains objectionable noise, especially on the glass enclosure.

in the reflected directions. Sample directions that are slightly off-peak will likely yield

only a tiny contribution even precisely aimed at the camera.

As an example, supposewewant to sample a direction from a surfacematerial modeled

with (normalized) Blinn-Phong BRDF. A corresponding probability density function for

sampling the BRDF would be

pdf (θ) =
n+ 1

2π
cosn (θ) , (4.1)

where θ is the angle between surface normal and half vector (the midway direction

of incident and reflection direction), and n is the specular exponent. Generating samples

that conform to pdf (θ) will require two uniformly distributed random numbers ξ1 and ξ2
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in [0, 1) and mapped to spherical coordinates (θ, ϕ):

θ = arccos
(
ξ

1
n+1

1

)
ϕ = 2πξ1.

(4.2)

Applying this sampling strategy to all kinds of BSDF supported by our rendering sys-

tem [3], we can directly visualize the photon cones that are aligned to importance-sampled

BSDF directions (fig. 4.3).

Figure 4.3: Directly visualize a cornell box scene with shiny bunny inside. The direction
of photon cones are sampled based on BSDF importance sampling. We apply only 40
iterations on this image to better demonstrate the noise in rendered image.
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4.2.2 Direct Camera Connections

The solution mentioned in Section 4.2.1 is however not true for rough materials. Rough

material tends to have a comparatively even contribution with any set of the direction

pair (ωi, ωo) across the unit sphere centered on x. An extreme example is the Lambertian

diffuse model which has a BRDF that is view-independent. For instance, the brightness of

every position will not change in a static scene with Lambertian material only, no matter

the position and viewing angle of the observer. In such a situation, we should directly

point the photon cones from rough materials to the camera.

Directly pointing a photon cone to camera position can be seen as a form of next event

estimation (NEE), except this is done in a reversed way comparing to the canonical ap-

proach. To make camera NEE sample unbiased, we utilize a sharp distribution around #»

V ,

the vector pointing to camera (fig. 4.4). In our implementation, we use the aforementioned

Blinn-Phong distribution (eq. (4.1)) for the sampling routine.

𝐿 𝑉

𝑁

Figure 4.4: By constructing a distribution that points to the camera, we are able to im-
portance sample the direction of camera. It is worth noting that the portion below the
hemisphere defined by #»

N will be mirrored around the origin if such sample is detected;
we do so to make the camera NEE sample unbaised.
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On each path vertex, we are now able to sample cone directions based on two tech-

niques: BSDF importance sampling and camera NEE. If we directly store two photon

cones, each with their full energy, the resulting will be twice as bright as it should be.

This is due to the fact that each technique is by itself an unbiased strategy (using either

of the technique will result in a correctly converged image). An elegant solution called

multiple importance sampling (MIS) is introduced by Veach, which we will talk about in

Section 4.3. Weighting the photon cones from each technique appropriately using MIS, a

more converged image can be obtained with the same amount of photon cones (fig. 4.5).

(a) (b)

Figure 4.5: (a) Camera NEE and BSDF importance sampling combined using MIS. (b)
BSDF importance sampling only. Both images use the same amount of photon cones. (40
iterations)

4.2.3 Conical Importon Map

A significant amount of energy may arrive at the image plane indirectly. Let us consider a

polished metallic sphere placing on the ground. Its bottom part will reflect energy coming

from the ground plane, which in turn requires one or more bounces to reach from the light

source (fig. 4.6).

For shiny materials like the sphere in fig. 4.6, it would be wise to not directly sample

photon cones on such surfaces for short path lengths, as normal path tracing can handle
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Figure 4.6: Light energy may arrive at the ground (yellow dot) directly from the blue wall
(the black path), or indirectly through the white wall in the background (the gray path).

these BSDFs extremely well. We can do path tracing as usual and sample the photon cone

map on the second or third bounces according to eq. (3.14). For this to work, it would be

desirable to have photon cones on the ground pointing towards the reflected direction of

the viewing vector, such that the view path is more likely to carry non-zero contributions;

otherwise, randomly distributed photon cones is unlikely to be properly aligned and will

result in larger radiance estimation variance. Neither the techniques described earlier were

effective on aligning photon cones along reflected (can be one or more times) view vectors

since they use only local information around the path vertex for sampling.

We can leverage the adjoint of light transport, the camera importance transport, to

solve the problem (fig. 4.7). Tracing camera importance can be intuitively understood as

emitting the value of sensor response function just like radiance except it quantifies the lo-

cal importance of the camera. The adjoint of photon cones happens to be easily extensible

for importance transport. The result is an acceleration structure similarly constructed as

photon cones, but filled with conical importons. Our approach is similar to the approach

by Heinrich and Werner [17], except that we do not reproject (splat) the samples to adapt
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our cone bandwidth according to local sample density.

𝑥1

𝑥2

𝑥3
𝑓

𝑓𝐿𝑒 𝑊𝑒

𝑓

𝑥0 𝑥4

Figure 4.7: The beauty of symmetricity in light transport. Light energy (Le) coming from
x0 to x4 is equivalent to tracing camera importance (We) from x4 to x0.

Different to photon cones, we use a single floating-point value to store camera impor-

tance in conical importons because only the magnitude of the importance is relevant to

perform importance sampling given a list of nearby conical importons (by constructing a

conical importon map and execute a nearest neighbor query). The result is quite effective.

4.3 Multiple Importance Sampling

We have now introduced three kinds of photon cone sampling techniques, each with its

advantages. However, as already mentioned, neither of the techniques best sample the

rendering equation 1. Veach proposed a solution to combine the benefits from each of

the sampling techniques called multiple importance sampling (MIS) [31, Chapter 9]. We

will show how to combine the aforementioned techniques to dramatically increase the

performance of photon cone map and the corresponding results in this section.

1Ideally, the conical importon technique will result in perfect importance sampling. This is only possible
if we have an infinite amount of importons and a cone bandwidth close to zero. The use of a finite cone
extent to reconstruct the importance function can make it inferior to other techniques on shiny surfaces and
other high frequency features.
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(a) (b)

Figure 4.8: (a) Indirectly sample photon cone map using conical importon guided cones
(with BSDF importance sampling and camera NEE). (b) Without the guidance of conical
importons. Both images use the same amount of photon cones. (40 iterations)

MIS states that a new unbiased estimator E can be constructed by

E =
n∑

i=1

1

ni

ni∑
j=1

wi (Xi,j)
F (Xi,j)

Pi (Xi,j)
, (4.3)

where n is the number of participating techniques and wi is a corresponding weight for

each sample. In order to maintain E’s unbiasedness, we should let
∑n

i=1wi (x) = 1when-

ever F (x) ̸= 0 and wi (x) = 0 whenever Pi (x) = 0. We enforce MIS’ed photon cone

samples to satisfy these conditions in our implementation.

4.3.1 Binary Techniques

We can combine any pair of the aforementioned techniques to form a new one that re-

tains benefits from both techniques via MIS (see fig. 4.5 as an example). For instance,

if combining BSDF importance sampling and camera NEE for cone directions is needed,

a suitable weighting function must be chosen. We use the power heuristic proposed by
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Veach and Guibas

wi (x) =
pdfβ

i (x)∑n
j=1 pdf

β
j (x)

(4.4)

with n = 2 and β = 2.

4.3.2 Triplet Techniques

Combining conical importon based importance sampling with BSDF and camera impor-

tance sampling for cone directions is also possible. This ends up being our main sampling

strategy due to their robustness in handling most lighting configurations, though our API

still retain the ability to freely turn any of the MIS’ed techniques off since for some scenes

this can be beneficial. A constructed conical importon map can approximate the incom-

ing importance from the camera and we can construct a sample distribution out of it to

guide photon cones. This can be useful if we lookup the photon cone map on indirect

bounces (fig. 4.8).

Our implementation of triplet MIS corresponds to the weighting function 4.4 with

n = 3 and again β = 2. In our tests, β = 2 slightly outperforms other exponents no

matter the involved number of sampling techniques. Generally speaking, storing conical

importons on direct hits (the first intersection found when tracing from a camera) is not

necessary if camera NEE is in use while tracing photon cones; since camera NEE would

be far more efficient in guiding samples toward the camera. Similarly, we do not store

importon records on delta BSDFs if BSDF importance sampling is turned on.

4.4 Possible Extensions

Extending our photon cone focusing rendering algorithm should not be a difficult task,

as the framework is fairly flexible. For instance, optimizing parameter choosing with

ray differentials can be effective since eye path is traced just like normal path tracing,

and σ1 can be determined accordingly. It is also possible to independently determine an

initial bandwidth for each path length. The properties of surface material can be taken into
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account when deciding θ1, e.g., using smaller θ1 values for glossy BSDFs and larger ones

for rough/diffusive BSDFs.

Also, in order to handle impossible-to-sample paths for XPPM methods, PCF can

serve as a plug-in method for LSSSE paths and others. A more difficult extension would

be generalizing PCF to work with VCM (as another sampling technique in addition to

PPM and BDPT).
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Chapter 5

Robust Light Transport with Photon

Cones

We demonstrate image rendered with the photon cone focusing (PCF) algorithm in this

chapter. PCF is a rendering algorithm that can handle complex lighting phenomena and

scene setups that are considered ”hard” by (local) path sampling transport algorithms. In

Section 5.1.1, we provide a brief overview of Veach’s path regular expression and points

out several shortcomings of path sampling and photon mapping methods. We analyze our

method quantitatively and qualitatively in Section 5.3.1 and Section 5.3.2, respectively.

Finally, the limitations of our method are discussed in Section 5.3.3.

5.1 Characteristics

The PCF rendering algorithm eliminates all possible singularities in a scene representation

due to photon cone’s non-zero bandwidth in both spatial and angular dimensions. Any path

regular expressions 5.1.1 can be captured by our method. In the following sections, we

use Veach’s path regular expressions to better understand PCF’s capabilities.
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5.1.1 Path Regular Expression

Veach’s full-path regular expression [31, Chapter 8] is an extended Heckbert notation

for describing path properties including emitters and sensors. The endpoints of a path

are capped with the letter L and E, where the former denotes an emitter and the later

denotes a sensor. Two extra letters are introduced for denoting diffuse/glossy scattering

events (D) and specular events (S). Emitters and sensors are also appended with two

additional letters to represent their positional and directional properties. For instance,

we can write LDD for diffusive area lights, LSD for point lights, and LDS for direc-

tional lights. Sensors are similarly expressed as, for example, DDE for canonical cam-

eras,DSE for pinhole cameras, and SDE for cameras with orthographic projection. The

events in-between the emitter and the sensor are denoted as Heckbert’s original notation.

As a result, LDD (D|S)∗DSE is an expression for the set of all possible paths generated

from a diffusive area light through scene geometries and landed on a pinhole camera.

Limitations of Path Sampling

There exist paths that are not samplable by (local) path sampling methods, and such sce-

nario can be quite common in day-to-day scenes. An example is a framed drawing (D)

with glass cover (S) illuminated by LEDs (LSD). The drawing has a rough surface that

scatters incoming energy went from LEDs and through the glass cover. However, prob-

lems occurred as scattered energy refracted through the glass cover and tries to connect

to a pinhole camera (DSE); since it has zero probability to randomly have a refracted

scattering direction that happens to go through an infinitesimal aperture. The same issue

persists if importance is being transported. The path between the camera and the LEDs

has the expression SDS, and the full expression LSDS (DS)+DSE for all bounces in

the frame is impossible to sample with any (local sampling) methods. Any sharp surface

BSDF illuminated by small light sources can make path tracing (including BDPT) to fail

completely (path connections do not align with a BSDF’s spike). The problem is shown

in fig. 5.1. Note that there exist other geometry configurations that cause the same prob-

lem, and different light transport algorithms can introduce their own set of unsamplable
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paths.

𝑆 𝐷

(specular) (diffuse)

(zero contribution)

Figure 5.1: The problem of SDS paths makes Vincent van Gogh’s painting placed behind
a glass plane unrenderable. A BSDF that is sharp enough (green lines) can easily make
NEE to fail.

Limitations of Photon Mapping

Though photon mapping methods partially solve the problem of SDS paths by merging

nearby path vertices (fig. 5.2), making the painting property illuminated by potentially

small light sources through a glass plane with specular BSDF. However, not all the paths

are properly handled and some lighting features are still missing. To elaborate, reflections

on the glass plane will be completely black since traditional photon maps cannot esti-

mate radiance on specular surfaces (and being extremely inefficient on a nearly specular

one). The teaser figure in [23] clearly shows the issue in a real-world scenario where the

reflection of a LED panel is completely missing in path tracing and photon mapping meth-

ods. Similar problems exist on complex luminaires such as automotive tail lights [25] and

chandeliers [33].

Our explanation on such issues can be derived from the measurement interpretation

in Section 2.2. Note that we can interpret photon mapping as constructing a hypothetical
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𝑆 𝐷

merge nearby vertices on 𝐷

(specular) (diffuse)

Figure 5.2: Non-zero contribution can be obtained by merging nearby (region enclosed
by dots) path vertices on diffusive surfaces.

sensor on the sceme manifold M, where we can measure any quantity using the sensor

response function

Wt (xℓ+1 → x′ℓ) = K (x′ℓ − xℓ) f (xℓ+1 → x′ℓ → xℓ−1) cos (θi) . (5.1)

InsideWt, surface BSDF f is being included as part of the sensor response function. Even

though K (x) is a kernel with finite support, the introduction of f makes Wt once again

prone to unsamplable delta distributions. For example, on the surface of mirrors, we have

the following BRDF

f (xℓ+1 → xℓ → xℓ−1) =
δ ((xℓ → xℓ−1)− reflect (xℓ+1 → xℓ))

cos (θi)
, (5.2)

which contains a delta function that is unable to resolve by K (x) alone.
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5.2 Dissolving Singularities

Our formulation of photon cones removes singularities in both spatial and angular do-

mains. We call this singularity dissolving as their removal is done with a blurring effect

applied. Photon cones can be useful in capturing difficult lighting configurations since

sampling a photon cone map not only implies the reuse of nearby paths, it can be done on

all kinds of BSDF including delta distributions. In fig. 5.3, the problem of SDS paths is

illustrated in a concise way, where connection from x2 to x1 and x3 must always fail for

local path sampling methods. Vertex merging on either x1 or x3 is not feasible as well. Our

formulation ensures that sampling photon cone maps can succeed in any type of BSDFs.

𝑥1

𝑥2

𝑥3

𝑊𝑒

𝑥4

𝑥1

𝑥2

𝑥3

𝑥0

𝐿𝑒 𝑊𝑒

𝑥4

𝑆

𝐷

𝑆

𝐷

𝑆

Singularity dissolved
by photon cones

Figure 5.3: Our formulation of photon cones ensures successful vertex merging on any
type of surface material (bottom). Connecting and merging vertices on either x1 or x3 is
impossible for traditional approaches (top).

5.3 Comparisons

In the following sections, quantitative and qualitative analyses of the rendered images

produced by our algorithm are made.
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5.3.1 Quantitative Analyses

In Section 3.5, we concluded that PCF is consistent, i.e., converges to the correct re-

sult in the limit. We now verify this property by performing several experiments that

examine the error produced by our method as it approaches the ground truth (see Fig-

ure 5.4 through 5.7).

For the following scenes, we thank professor Hachisuka for providing the torus and

box scene. In Figure 5.4 we marked three (color-coded) probe locations that are repre-

sentative to the scene (A: on the dim silhouette of glass reflection; B: a bright spot in the

caustics; C: on the surface of the enclosed torus). Figure 5.5 shows that our algorithm cor-

rectly estimate surface radiance as the result converges to actual value with the shrinking

spatial and angular bandwidths of the kernel.

•  A •  B

•  C

Figure 5.4: Hachisuka’s torus scene rendered with PCF. Three color-coded locations are
analyzed in Figure 5.5. (4000 iterations with σ1 = 0.1, 1M cones per iteration)

Similarly, we show in Figure 5.6 through Figure 5.7 that our algorithm is consistent
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in the limit (A: on the caustics; B: on the reflected caustics; C: on a surface dominated by

indirect lighting).

Note in both tests, we use S = 2.

5.3.2 Qualitative Analyses

We show that our method has superior convergence rate in terms of the smoothness of

lighting and captured light paths, with a scene that is dominated by shiny materials (with a

GGX roughness close to 0). See Figure 5.8 to understand the arrangement of the geome-

tries in the scene. A series of side-by-side comparisons are given (see Figure 5.9 to 5.13).

The image on the left is ground truth rendered by path tracing using one million samples

per pixel (with next event estimation, NEE, on). All images on the right are rendered with

an Intel Core i7-6800k processor (6C12T) with 10 threads.

From the results, we can see our method robustly captures reflections on both the

pyramids and the bunny. With less rendering time, PCF can resolve most lighting features.

As the scene is full of shiny surfaces, BDPT (in Figure 5.10) and SPPM (in Figure 5.13)

are essentially degenerated to unidirectional path tracing and incurs large sample variances

that manifest themselves as noises/fireflies.

5.3.3 Limitations

Our photon cone radiance estimate introduces boundary biases in the angular domain in

addition to the spatial domain. This can result in light leaking and inaccurate highlight

in some situations. The rate of convergence is also slower since the kernel has more

dimensions than in canonical density estimation methods. In Figure 5.14, we subtract a

ground truth image of Hachisuka’s box scene with an image rendered by PCF. It clearly

shows the additional form of biases produced by our method (note the boundary between

adjacent geometries).
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Figure 5.5: Chart showing that the error induced by photon cone radiance estimation ap-
proaches zero. (a) (b) Recorded bandwidth shrinkage information during the experiment.
(c) Absolute error on the color-coded locations in Figure 5.4.
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•  A

•  B

•  C

Figure 5.6: Hachisuka’s box scene rendered with PCF. Three color-coded locations are
analyzed in Figure 5.7. (4000 iterations with σ1 = 0.1, 4M cones per iteration)
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Figure 5.7: Chart showing that the error induced by photon cone radiance estimation ap-
proaches zero. (a) (b) Recorded bandwidth shrinkage information during the experiment.
(c) Absolute error on the color-coded locations in Figure 5.6.
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Glossy pyramids

Glossy bunny

Small light source

Glossy background

Figure 5.8: The scene that we perform our qualitative analyses on.

(a) PTNEE, spp: 1M (b) PCF, iteration: 100, photon cones: 1M/iteration,
13.4 min.

Figure 5.9: Comparison between ground truth and PCF (ours).
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(a) PTNEE, spp: 1M (b) BDPT, spp: 512, 15.2 min.

Figure 5.10: Comparison between ground truth and BDPT.

(a) PTNEE, spp: 1M (b) PSSMLT, spp: 512, 19.3 min.

Figure 5.11: Comparison between ground truth and PSSMLT.

62



doi:10.6342/NTU201901709

(a) PTNEE, spp: 1M (b) ERPT, spp: 512, 23.9 min.

Figure 5.12: Comparison between ground truth and ERPT.

(a) PTNEE, spp: 1M (b) SPPM, iteration: 512, photons: 200k/iteration, 17
min.

Figure 5.13: Comparison between ground truth and SPPM.
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Figure 5.14: Image difference of ground truth (SPPM) and PCF. In total, 200G photons
are used for SPPM and 16G photon cones for PCF. (contrast adjusted to better show the
difference)
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Chapter 6

Conclusions

We conclude by providing amore in-depth summary than the ones given in Chapter 1. Ma-

jor results derived from this thesis are reviewed and potential improvements, extensions,

and future work are explored, if any.

In Chapter 2, we review photon mapping methods with two popular interpretations:

energy packet and measurement. Detailed explanations on how photon mapping is formu-

lated are given, building a solid foundation for understanding advanced density estimation

algorithms and our proposed photon cone focusing rendering algorithm. We mathemati-

cally proved in Chapter 3 that estimating any quantity with photon cones will lead to a con-

sistent result as the case of progressive photonmapping. Chapter 4 provides enhancements

on our algorithms, including multiple importance sampling with three different techniques

for photon cones. Notably, we use the adjoint of photon cones, conical importons, to guide

cone samples. In Chapter 5, rendered results are given and comparisons to other rendering

algorithm are done. We also showed that our method indeed converges to ground truth by

experimental means in addition to mathematical proof.

In short, this thesis describes a new global illumination method that achieves:

• Vertex merge on any BSDF types

• Handles difficult lighting phenomena

• Does not require material evaluation on the visualization pass

• Converges to the ground truth
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6.1 Future Work

We already mentioned several possibilities on extending PCF in Section 4.4. An interest-

ing idea would be unifying PCF as an additional sampling technique to the VCMmethod.

Bouchard et al. [2] introduced the groundwork for combining bidirectional path tracing,

photon mapping, and directional regularization. Our method can be seen as directional

regularization with path reuse and has the potential to be included as the fourth technique

for MIS.

Kaplanyan and Dachsbacher also mentioned that dropping a photon map after each

iteration can be inefficient as they can be potentially reused for lower variance in the final

section of their paper [22]. We did try to alternate between different values of samples per

pixel in each iteration of our algorithm (the S parameter), and noticed that using S = 1

rarely produce an image with the lowest variance; usually a value of S = 2 to 4 works the

best. Trying to derive the optimal S can also be a direction worth investing.
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Appendix A

Path Tracing

Path tracing is a rendering algorithm based on Monte-Carlo integration. It is compara-

tively simple to implement than other global illumination methods, handles a wide variety

of light paths in a unified framework, and has predictable convergence on most scenes.

Apart from the scene description, path tracing requires only an acceleration structure built

upon scene geometries, which makes it a good plug-inmethod for rendering specific light

paths; for example, using path tracing to render direct lighting and photon mapping for

the indirect bounces. In this appendix, we give a brief overview of the theoretical basis of

the path tracing method.

A.1 Radiance and Throughput

The rendering equation (or light transport equation, LTE) proposed by Kajiya et al. [21]

can be written as follows

Lo (x,wo) = Le (x,wo) +

∫
Ω

Li (x,wi) f (x,wi, wo) cos θidwi, (A.1)

where Li and Lo are the incident and outgoing radiance, respectively. The integral also

involves a quantity f (x,wi, wo) commonly known as BSDF (bi-directional scattering dis-

tribution function). In the case of multiple bounces, we should expand Li into another in-

tegral with respect to point x′ (the point ωi points to) and let Li (x,wi) = Lo (x
′, wo). This
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is a recursive process. Recursively expand the LTE and using xi with the combination of

an arrow to conveniently represent both position and direction, we get

Lo (x1 → x0) = Le (x1 → x0)

+

∫
Ω1

Le (x2 → x1) f (x2 → x1 → x0) cos (θ1) dw1

+

∫
Ω1

∫
Ω2

Le (x3 → x2) f (x3 → x2 → x1) cos (θ2) f (x2 → x1 → x0) cos (θ1) dw2dw1

+ · · · .

(A.2)

The expanded LTE (A.2) is equivalent to the path integral formulation introduced by

Veach [31, Section 8.2], which is an infinite-dimensional integral. It states that the outgo-

ing radiance with the direction x1 → x0 from point x1 is the amount of emitted radiance

from x1 plus the amount that bounced once, and plus the amount that bounced twice, and

so on. The integral for n bounces (n ≥ 1) can be written compactly as

Lo (x1 → x0) = Le (x1 → x0)

+
∞∑
n=1

{∫
Ωn

Le (xn+1 → xn) ·
n∏

i=1

[
f (xi+1 → xi → xi−1) cos (θi)

]
dωn

} (A.3)

and can be solved using the Monte-Carlo estimator

Lo (x1 → xo) ≈ Le (x1 → xo) +
1

M

M∑
j=1

∞∑
n=1

Le (Xj,n+1 → Xj,n) · T
(
Xn

j

)
p
(
Xn

j

) , (A.4)

where p
(
Xn

j

)
is the probability density of sampling the length n path and T

(
Xn

j

)
is the

path throughput

T (xn) =
n∏

i=1

(f (xi+1 → xi → xi−1) cos (θi)) . (A.5)
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A.2 The Measurement Equation

Note that equation (A.3) represents only the radiance from x1 to x0. In case of rendering,

normally a camera is placed in the scene and we would like to record the energy every

sensor takes to form an image. The measurement equation [31] describes the situation

where an arbitrary quantity Ψ is being measured by some sensor with a finite area

Ψ =

∫
Asensor

∫
Ω

We (x1 → x0)Li (x1 → x0) dωdA. (A.6)

We can be thought of as the sensor response function. Ideally, the sensormeasures radiance

andWe should be defined accordingly.
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Appendix B

Supplemental Derivations for PCF

B.1 Expressing Variance of the Estimation Error

We start from the equation (3.15) that represents the estimation error:

εσ =
1

M

M∑
j=1

Kσ (Ψj − ψ)Lj − Lo (ψ) . (B.1)

By treating particle locationsΨj and weightsLj as independent and identically distributed

(i.i.d.) random variables, and let p (ψ) be the probability density for Ψ, we can derive the

variance of the radiance estimate with common identities

Var[εσ] = Var
[
1

M

M∑
j=1

Kσ (Ψ− ψ)L − Lo (ψ)

]

= Var
[
1

M

M∑
j=1

Kσ (Ψ− ψ)L
]

=
1

M2
Var
[ M∑

j=1

Kσ (Ψ− ψ)L
]

=
1

M2

M∑
j=1

Var[Kσ (Ψ− ψ)L]

=
1

M
Var[Kσ (Ψ− ψ)L].

(B.2)
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Recall the identity1

Var[XY ] = E[X]2Var[Y ] + Var[X]
(
E[Y ]2 + Var[Y ]

)
,

and let X = Kσ (Ψ− ψ) as well as Y = L, we have

Var[εσ] =
1

M

{
E[Kσ]

2Var[L] + Var[Kσ]
(
E[L]2 + Var[L]2

)}
, (B.3)

where arguments for Kσ are omitted for brevity.

B.2 Expressing Expected Estimation Error

We start with equation (3.15) and again treats Ψj and Lj as i.i.d. random variables, the

expected error can be simplified as

E[εσ] = E
[
1

M

M∑
j=1

Kσ (Ψ− ψ)L − Lo (ψ)

]

= E
[
1

M

M∑
j=1

Kσ (Ψ− ψ)L
]
− Lo (ψ)

=
1

M
E
[ M∑

j=1

Kσ (Ψ− ψ)L
]
− Lo (ψ)

=
1

M

M∑
j=1

E[Kσ (Ψ− ψ)L]− Lo (ψ)

= E[Kσ (Ψ− ψ)L]− Lo (ψ)

= E[Kσ (Ψ− ψ)]E[L]− Lo (ψ)

(B.4)

Note that the derived results (B.3) and (B.4) are of the same form to the ones made by

Knaus and Zwicker [24]. But in our derivation, we are using a higher-dimensional (joint

position directional space) kernel with outgoing radiance samples which can be seen as a

generalization to the original formulation.

1True for independent X and Y .
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B.3 Expected Value of the Kernel

We will begin with the Hessian matrix H = ∇∇T for spherical coordinates2. Recall that

gradient in spherical coordinates is

∇pd =
∂pd
∂r

r̂ +
1

r

∂pd
∂θ

θ̂ +
1

r sin (θ)
∂pd
∂ϕ

ϕ̂,

from which Hd can be derived (note that in our case r component can be eliminated as

r = 1 and pd has a zero derivative with respect to r):

Hd =


∂2pd
∂θ2

1

sin (θ)
∂2pd
∂θ∂ϕ

1

sin (θ)
∂2pd
∂ϕ∂θ

1

sin2 (θ)
∂2pd
∂ϕ2

 . (B.5)

In the analysis of E[Kσ (Ψ− ψ)], we limit ourselves to the terms up to the second-order

ones since they form the first non-vanishing moments in integral (3.22) (in addition to

the zeroth moment). It is unfortunate that if we expand the density function at the origin

of the kernel, there is a singularity directly lies on that location. To elaborate, ∇pd has

a singularity on the direction ϕ if being evaluated with θ = 0, making the denominator

zero. We can approach this problem in two directions. The first possibility is we can

simply assume that the density variations (with respect to kernel bandwidth σ) involving

the ϕ component is at most equal to the θ component; or being an isotropic distribution,

i.e., independent of ϕ. They both allow ignoring ϕ, at a cost that the behavior of highly

anisotropic distribution is not captured. The second possibility is a more general one

that employs small-angle approximation on Kσ as well as on S. Since we are concerned

about the expected value after a large number of iterations which corresponds to small

bandwidths (section 3.4) and consequently small angles. We will explore both of them

shortly.

Substituting equation (3.23) into (3.22), and note that a hemisphere can be symmet-

rically integrated under the domain Ds = {−π/2 ≤ θ ≤ π/2,−π/2 ≤ ϕ ≤ π/2}.

Eliminating all odd-moment integrals with the first proposed method in mind to tackle the
2We omitted the trivial case of Cartesian Hessian.
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singularity, we arrive at the form

E[Kσ (Ψ− ψ)] =

∫
S
Kσ (ψ

′) pm (0) pd (0) dψ
′

+

∫
S
Kσ (ψ

′) pm (0)
1

2!
(ω′)

T
Hd (0) (ω

′) dψ′.

+

∫
S
Kσ (ψ

′) pd (0)
1

2!
(x′)

T
Hm (0) (x′) dψ′.

(B.6)

For the first part in the RHS, the integrand is a constant and will integrate to pm (0) pd (0)

(recall equation 3.5). For the second and the third part, they are equivalent to the following

integrals after expanding the products:

pm (0)

2! · Cσ

· ∂
2pd (0)

∂θ2

∫
S
θ′2dψ′, (B.7)

and
pd (0)

2! · Cσ

·
[
∂2pm (0)

∂u2

∫
S
u′2dψ′ +

∂2pm (0)

∂v2

∫
S
v′2dψ′

]
, (B.8)

with x = (u, v). Integrating (B.7) over S, and expanding Cσ with t (σ) written as tσ for

clarity, we have

pm (0)

4π2σ2 [1− cos (tσ)]
· ∂

2pd (0)

∂θ2

∫
M

∫
Ω

θ′2dA′dω′

=
pm (0)

4π [1− cos (tσ)]
· ∂

2pd (0)

∂θ2

∫
Ω

θ′2dω′

=
pm (0)

4π [1− cos (tσ)]
· ∂

2pd (0)

∂θ2

∫ π
2

−π
2

∫ tσ

−tσ

θ′2|sin (θ′)|dθ′dϕ′

=
pm (0)

4 [1− cos (tσ)]
· ∂

2pd (0)

∂θ2

[ ∫ tσ

0

θ′2 sin (θ′) dθ′ −
∫ 0

−tσ

θ′2 sin (θ′) dθ′
]

=
pm (0)

4 [1− cos (tσ)]
· ∂

2pd (0)

∂θ2

[
− 2

(
t2σ − 2

)
cos (tσ) + 4tσ sin (tσ)− 4

]
.

(B.9)

Performing a series expansion at tσ = 0, the result can be expressed as

pm (0)

4
· ∂

2pd (0)

∂θ2

[
t2σ +O

(
t4σ
) ]

≈ Cd · t2σ, (B.10)

where Cd is a constant. For equation (B.8), the term that is related to u can be directly
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computed as

pd (0)

4π2σ2 [1− cos (tσ)]
· ∂

2pm (0)

∂u2

∫
M

∫
Ω

u′2dA′dω′

=
pd (0)

2πσ2
· ∂

2pm (0)

∂u2

∫
M
u′2dA′

=
pd (0)

2πσ2
· ∂

2pm (0)

∂u2

∫ σ

−σ

∫ √
σ2−v′2

−
√
σ2−v′2

u′2du′dv′

=
pd (0)

2πσ2
· ∂

2pm (0)

∂u2
· πσ

4

4

= Cu · σ2,

(B.11)

and the v-related term can be derived similarly as Cv · σ2, where Cu and Cv are both

constants. We can now write the expected value as

E[Kσ (Ψ− ψ)] =

∫
S
Kσ (ψ

′ − ψ) p (ψ′) dψ′

≈ pm (0) pd (0) + Cd · t2σ + (Cu + Cv) · σ2

= pm (0) pd (0) + Ck · σ2,

(B.12)

where Ck is a collective constant. The last step is valid under the implicit constraint

t (σ) = O (σ) which should be obeyed in addition to (3.7).

As mentioned earlier, another possible derivation is to employ small-angle approxi-

mation on the directional component in S. Our 4-D kernel and p (ψ) can thus be trivially

integrated over IR4 without singularities in gradient and unfactorable jacobians with den-

sity transformations. Furthermore, the kernel can now be approximated as

1

Cσ

≈ 1

π2σ2t2σ
(B.13)

with decent precision in the region around ω = (0, 0). It is also possible to let t (σ) as

a polynomial with arbitrary degrees as long as it satisfies all aforementioned constraints.

The analysis of E[Kσ (Ψ− ψ)] then follows the same procedure in this section and will

arrive at the same result as (B.12). Namely, E[Kσ (Ψ− ψ)] ≈ pm (0) pd (0)+C
′
k ·σ2 with

a different constant C ′
k.
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