
Photon: A Modular, Research-Oriented 
Rendering System

Tzu-Chieh Chang, Ming Ouhyoung

Introduction

To develop a graphics project with ease and 
confidence, the reliability and extensibility 
of the underlying framework are essential. 
We would like to present a solution named 
Photon, which is an open-source and cross-
platform rendering system written in C++. 
The goal of our system is to provide a set of 
building blocks to facilitate the implemen-
tation of new rendering algorithms, as well 
as a unified foundation for comparing the 
performance of different methods.

The Rendering System

Benedikt Bitterli. 2016. Tungsten renderer. https://benedikt-bitterli.me/tungsten.html.
Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic Progressive Photon Mapping. ACM Trans. Graph. 28, 5, Article 141 (Dec. 2009).
Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive Photon Mapping. ACM Trans. Graph. 27, 5, Article 130 (Dec. 2008).
Henrik Wann Jensen. 1996. Global Illumination Using Photon Maps. In Proceedings of the Eurographics Workshop on Rendering Techniques ’96.
Cao Jiayin. 2016. SORT. https://jerrycao1985.github.io/SORT/.
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). 
Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Related Work

Existing options such as pbrt-v3 and 
Mitsuba exist. However, they either focus 
on education or not being updated for 
quite some time.

Our design is inspired by Microsoft’s 
Component Object Model (COM) and the 
concept of content cooking in Unreal 
Engine 4.

Our Approach

Our tri-layer architecture helps to 
simplify logics, and opens an opportunity 
for project developers to natively alter 
scene data without intervening lower 
level modules.

Results
Three flavors of photon mapping (PM [Jensen 1996], PPM 
[Hachisuka et al. 2008], SPPM [Hachisuka and Jensen 2009]) are 
demonstrated.

Other projects such as Tungsten and 
SORT are similar to ours but are weaker 
in unit test coverage.

Scene Description Commands

Raw Data Containers

Geometry Material
Light

Source
Image

Motion 
Source

Cooked Data Containers

Actor (composite data containers)

Physical Actor

Primitive
Surface 
Optics

Volume 
Optics

Texture
System

Emitter

Substance Behavior

User 
Interfaces

CLI

Batching
Scripting

GUI

Projects
Monitoring

HDR Viewer

Blender

Asset Editing
BSDF Nodes Architectural Layer Aggregate Module Standalone Module

We consider a rendering system as an assembly line that 
gradually transforms scene description data into 2-D 
imageries. As a result, each layer in our architecture 
corresponds to data in a specific state.

The second layer translates raw data (scene description) 
into cooked data, which is the target format that 
actually participate in the rendering process.

Fe
at

ur
e 

Se
t

La
rg

e
Sm

al
l

Narrow Broad

Tungsten

Photon

Mitsuba

pbrt-v3

Number of Unit Tests

SORT

PM PPM SPPM

In the comparison, although our system is weaker in document 
and features, we have a relatively young codebase and is 
quickly catching up its predecessors.

A general comparison between similar systems. 
Darker shade indicates higher development activity.

References

Documentation Coverage

National Taiwan University


